
    h=                    0   S r SSKJr  SSKrSSKJr  SSKJr  / SQrSr	S\	-
  r
S	\	-   rSS
 jr " S S\5      r\" 5       rSSS jjrSSS jjr\ " S S5      5       r\S:X  a4  SSKrSSKr\R*                  " \R,                  " 5       R.                  5        gg)a	  Affine 2D transformation matrix class.

The Transform class implements various transformation matrix operations,
both on the matrix itself, as well as on 2D coordinates.

Transform instances are effectively immutable: all methods that operate on the
transformation itself always return a new instance. This has as the
interesting side effect that Transform instances are hashable, ie. they can be
used as dictionary keys.

This module exports the following symbols:

Transform
        this is the main class
Identity
        Transform instance set to the identity transformation
Offset
        Convenience function that returns a translating transformation
Scale
        Convenience function that returns a scaling transformation

The DecomposedTransform class implements a transformation with separate
translate, rotation, scale, skew, and transformation-center components.

:Example:

        >>> t = Transform(2, 0, 0, 3, 0, 0)
        >>> t.transformPoint((100, 100))
        (200, 300)
        >>> t = Scale(2, 3)
        >>> t.transformPoint((100, 100))
        (200, 300)
        >>> t.transformPoint((0, 0))
        (0, 0)
        >>> t = Offset(2, 3)
        >>> t.transformPoint((100, 100))
        (102, 103)
        >>> t.transformPoint((0, 0))
        (2, 3)
        >>> t2 = t.scale(0.5)
        >>> t2.transformPoint((100, 100))
        (52.0, 53.0)
        >>> import math
        >>> t3 = t2.rotate(math.pi / 2)
        >>> t3.transformPoint((0, 0))
        (2.0, 3.0)
        >>> t3.transformPoint((100, 100))
        (-48.0, 53.0)
        >>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2)
        >>> t.transformPoints([(0, 0), (1, 1), (100, 100)])
        [(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)]
        >>>
    )annotationsN)
NamedTuple)	dataclass)	TransformIdentityOffsetScaleDecomposedTransformgV瞯<   c                h    [        U 5      [        :  a  Sn U $ U [        :  a  Sn U $ U [        :  a  Sn U $ )Nr   r   r   )abs_EPSILON_ONE_EPSILON_MINUS_ONE_EPSILON)vs    J/var/www/html/env/lib/python3.13/site-packages/fontTools/misc/transform.py_normSinCosr   F   sE    
1v
 H	 
\	 H 
	H    c                      \ rS rSr% SrSrS\S'   SrS\S'   SrS\S'   Sr	S\S	'   Sr
S\S
'   SrS\S'   S rS rS rS rSSS jjrSS S jjrS!S jrSSS jjrS rS rS rS"S jrS#S jrS$S jrS"S jrSrg)%r   P   a  2x2 transformation matrix plus offset, a.k.a. Affine transform.
Transform instances are immutable: all transforming methods, eg.
rotate(), return a new Transform instance.

:Example:

        >>> t = Transform()
        >>> t
        <Transform [1 0 0 1 0 0]>
        >>> t.scale(2)
        <Transform [2 0 0 2 0 0]>
        >>> t.scale(2.5, 5.5)
        <Transform [2.5 0 0 5.5 0 0]>
        >>>
        >>> t.scale(2, 3).transformPoint((100, 100))
        (200, 300)

Transform's constructor takes six arguments, all of which are
optional, and can be used as keyword arguments::

        >>> Transform(12)
        <Transform [12 0 0 1 0 0]>
        >>> Transform(dx=12)
        <Transform [1 0 0 1 12 0]>
        >>> Transform(yx=12)
        <Transform [1 0 12 1 0 0]>

Transform instances also behave like sequences of length 6::

        >>> len(Identity)
        6
        >>> list(Identity)
        [1, 0, 0, 1, 0, 0]
        >>> tuple(Identity)
        (1, 0, 0, 1, 0, 0)

Transform instances are comparable::

        >>> t1 = Identity.scale(2, 3).translate(4, 6)
        >>> t2 = Identity.translate(8, 18).scale(2, 3)
        >>> t1 == t2
        1

But beware of floating point rounding errors::

        >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
        >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
        >>> t1
        <Transform [0.2 0 0 0.3 0.08 0.18]>
        >>> t2
        <Transform [0.2 0 0 0.3 0.08 0.18]>
        >>> t1 == t2
        0

Transform instances are hashable, meaning you can use them as
keys in dictionaries::

        >>> d = {Scale(12, 13): None}
        >>> d
        {<Transform [12 0 0 13 0 0]>: None}

But again, beware of floating point rounding errors::

        >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
        >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
        >>> t1
        <Transform [0.2 0 0 0.3 0.08 0.18]>
        >>> t2
        <Transform [0.2 0 0 0.3 0.08 0.18]>
        >>> d = {t1: None}
        >>> d
        {<Transform [0.2 0 0 0.3 0.08 0.18]>: None}
        >>> d[t2]
        Traceback (most recent call last):
          File "<stdin>", line 1, in ?
        KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]>
r   floatxxr   xyyxyydxdyc                F    Uu  p#U u  pEpgpXB-  Xc-  -   U-   XR-  Xs-  -   U	-   4$ )zTransform a point.

:Example:

        >>> t = Transform()
        >>> t = t.scale(2.5, 5.5)
        >>> t.transformPoint((100, 100))
        (250.0, 550.0)
 )
selfpxyr   r   r   r   r   r   s
             r   transformPointTransform.transformPoint   s<     !%"$bfrvo&:;;r   c                t    U u  p#pEpgU VV	s/ s H  u  pX(-  XI-  -   U-   X8-  XY-  -   U-   4PM     sn	n$ s  sn	nf )zTransform a list of points.

:Example:

        >>> t = Scale(2, 3)
        >>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)])
        [(0, 0), (0, 300), (200, 300), (200, 0)]
        >>>
r    )
r!   pointsr   r   r   r   r   r   r#   r$   s
             r   transformPointsTransform.transformPoints   sI     "&IOP"&2%rv';<PPPs   $4c                >    Uu  p#U SS u  pEpgXB-  Xc-  -   XR-  Xs-  -   4$ )zTransform an (dx, dy) vector, treating translation as zero.

:Example:

        >>> t = Transform(2, 0, 0, 2, 10, 20)
        >>> t.transformVector((3, -4))
        (6, -8)
        >>>
N   r    )r!   r   r   r   r   r   r   r   s           r   transformVectorTransform.transformVector   s7     bq"'!27RW#455r   c                l    U SS u  p#pEU VVs/ s H  u  pgX&-  XG-  -   X6-  XW-  -   4PM     snn$ s  snnf )zTransform a list of (dx, dy) vector, treating translation as zero.

:Example:
        >>> t = Transform(2, 0, 0, 2, 10, 20)
        >>> t.transformVectors([(3, -4), (5, -6)])
        [(6, -8), (10, -12)]
        >>>
Nr,   r    )r!   vectorsr   r   r   r   r   r   s           r   transformVectorsTransform.transformVectors   sD     bqELMW6227"BGbg$56WMMMs   0c                .    U R                  SSSSX45      $ )zReturn a new transformation, translated (offset) by x, y.

:Example:
        >>> t = Transform()
        >>> t.translate(20, 30)
        <Transform [1 0 0 1 20 30]>
        >>>
r   r   	transformr!   r#   r$   s      r   	translateTransform.translate   s     ~~q!Q1011r   Nc                :    Uc  UnU R                  USSUSS45      $ )a#  Return a new transformation, scaled by x, y. The 'y' argument
may be None, which implies to use the x value for y as well.

:Example:
        >>> t = Transform()
        >>> t.scale(5)
        <Transform [5 0 0 5 0 0]>
        >>> t.scale(5, 6)
        <Transform [5 0 0 6 0 0]>
        >>>
r   r4   r6   s      r   scaleTransform.scale   s*     9A~~q!Q1a011r   c                    [        [        R                  " U5      5      n[        [        R                  " U5      5      nU R	                  X#U* USS45      $ )zReturn a new transformation, rotated by 'angle' (radians).

:Example:
        >>> import math
        >>> t = Transform()
        >>> t.rotate(math.pi / 2)
        <Transform [0 1 -1 0 0 0]>
        >>>
r   )r   mathcossinr5   )r!   anglecss       r   rotateTransform.rotate   sD     ((~~qaRAq122r   c                    U R                  S[        R                  " U5      [        R                  " U5      SSS45      $ )zReturn a new transformation, skewed by x and y.

:Example:
        >>> import math
        >>> t = Transform()
        >>> t.skew(math.pi / 4)
        <Transform [1 0 1 1 0 0]>
        >>>
r   r   )r5   r=   tanr6   s      r   skewTransform.skew  s0     ~~q$((1+txx{Aq!DEEr   c           
         Uu  p#pEpgU u  pppU R                  X(-  X:-  -   X)-  X;-  -   XH-  XZ-  -   XI-  X[-  -   X-  X-  -   U-   X-  X-  -   U-   5      $ )zReturn a new transformation, transformed by another
transformation.

:Example:
        >>> t = Transform(2, 0, 0, 3, 1, 6)
        >>> t.transform((4, 3, 2, 1, 5, 6))
        <Transform [8 9 4 3 11 24]>
        >>>
	__class__r!   otherxx1xy1yx1yy1dx1dy1xx2xy2yx2yy2dx2dy2s                 r   r5   Transform.transform  s     (-$#C'+$#C~~I	!I	!I	!I	!I	!C'I	!C'
 	
r   c           
         U u  p#pEpgUu  pppU R                  X(-  X:-  -   X)-  X;-  -   XH-  XZ-  -   XI-  X[-  -   X-  X-  -   U-   X-  X-  -   U-   5      $ )a  Return a new transformation, which is the other transformation
transformed by self. self.reverseTransform(other) is equivalent to
other.transform(self).

:Example:
        >>> t = Transform(2, 0, 0, 3, 1, 6)
        >>> t.reverseTransform((4, 3, 2, 1, 5, 6))
        <Transform [8 6 6 3 21 15]>
        >>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6))
        <Transform [8 6 6 3 21 15]>
        >>>
rJ   rL   s                 r   reverseTransformTransform.reverseTransform%  s     (,$#C',$#C~~I	!I	!I	!I	!I	!C'I	!C'
 	
r   c                    U [         :X  a  U $ U u  pp4pVX-  X2-  -
  nXG-  U* U-  U* U-  X-  4u  pp4U* U-  X6-  -
  U* U-  XF-  -
  peU R                  XX4XV5      $ )a  Return the inverse transformation.

:Example:
        >>> t = Identity.translate(2, 3).scale(4, 5)
        >>> t.transformPoint((10, 20))
        (42, 103)
        >>> it = t.inverse()
        >>> it.transformPoint((42, 103))
        (10.0, 20.0)
        >>>
)r   rK   )r!   r   r   r   r   r   r   dets           r   inverseTransform.inverse=  s     8K!%gB39rcCiArBG#bS2X%7B~~bbb55r   c                    SU -  $ )zReturn a PostScript representation

:Example:

        >>> t = Identity.scale(2, 3).translate(4, 5)
        >>> t.toPS()
        '[2 0 0 3 8 15]'
        >>>
z[%s %s %s %s %s %s]r    r!   s    r   toPSTransform.toPSQ  s     %t++r   c                ,    [         R                  U 5      $ )z%Decompose into a DecomposedTransform.)r
   fromTransformrc   s    r   toDecomposedTransform.toDecomposed]  s    "0066r   c                    U [         :g  $ )ak  Returns True if transform is not identity, False otherwise.

:Example:

        >>> bool(Identity)
        False
        >>> bool(Transform())
        False
        >>> bool(Scale(1.))
        False
        >>> bool(Scale(2))
        True
        >>> bool(Offset())
        False
        >>> bool(Offset(0))
        False
        >>> bool(Offset(2))
        True
)r   rc   s    r   __bool__Transform.__bool__a  s    ( xr   c                <    SU R                   R                  4U -   -  $ )Nz<%s [%g %g %g %g %g %g]>)rK   __name__rc   s    r   __repr__Transform.__repr__w  s    )dnn.E.E-G$-NOOr   r    r   r   )r#   r   r$   r   )r   N)r#   r   r$   float | None)r@   r   )returnstr)rs   z'DecomposedTransform')rs   bool)rn   
__module____qualname____firstlineno____doc__r   __annotations__r   r   r   r   r   r%   r)   r-   r1   r7   r:   rC   rG   r5   r\   r`   rd   rh   rk   ro   __static_attributes__r    r   r   r   r   P   s    L\ BMBMBMBMBMBM<Q6
N	22 3
F
*
06(
,7 ,Pr   r   c                     [        SSSSX5      $ )zReturn the identity transformation offset by x, y.

:Example:
        >>> Offset(2, 3)
        <Transform [1 0 0 1 2 3]>
        >>>
r   r   r   r#   r$   s     r   r   r   ~  s     Q1a&&r   c                ,    Uc  U n[        U SSUSS5      $ )zReturn the identity transformation scaled by x, y. The 'y' argument
may be None, which implies to use the x value for y as well.

:Example:
        >>> Scale(2, 3)
        <Transform [2 0 0 3 0 0]>
        >>>
r   r}   r~   s     r   r	   r	     s#     	yQ1aA&&r   c                      \ rS rSr% SrSrS\S'   SrS\S'   SrS\S'   Sr	S\S	'   Sr
S\S
'   SrS\S'   SrS\S'   SrS\S'   SrS\S'   S r\S 5       rSS jrSrg)r
   i  zThe DecomposedTransform class implements a transformation with separate
translate, rotation, scale, skew, and transformation-center components.
r   r   
translateX
translateYrotationr   scaleXscaleYskewXskewYtCenterXtCenterYc                   U R                   S:g  =(       d    U R                  S:g  =(       d    U R                  S:g  =(       d}    U R                  S:g  =(       dg    U R                  S:g  =(       dQ    U R
                  S:g  =(       d;    U R                  S:g  =(       d%    U R                  S:g  =(       d    U R                  S:g  $ )Nr   r   )	r   r   r   r   r   r   r   r   r   rc   s    r   rk   DecomposedTransform.__bool__  s    OOq  "!#"}}!" {{a" {{a	"
 zzQ" zzQ" }}!" }}!
	
r   c                   Uu  p#pEpg[         R                  " SU5      nUS:  a  X(-  nX8-  nX%-  X4-  -
  n	Sn
S=pSnUS:w  d  US:w  a|  [         R                  " X"-  X3-  -   5      nUS:  a  [         R                  " X.-  5      O[         R                  " X.-  5      * n
XU-  p[         R                  " X$-  X5-  -   X-  -  5      nO}US:w  d  US:w  ap  [         R                  " XD-  XU-  -   5      n[         R
                  S-  US:  a  [         R                  " U* U-  5      O[         R                  " XO-  5      * -
  n
X-  UpO [        UU[         R                  " U
5      X-  U[         R                  " U5      U-  SSS5	      $ )a-  Return a DecomposedTransform() equivalent of this transformation.
The returned solution always has skewY = 0, and angle in the (-180, 180].

:Example:
        >>> DecomposedTransform.fromTransform(Transform(3, 0, 0, 2, 0, 0))
        DecomposedTransform(translateX=0, translateY=0, rotation=0.0, scaleX=3.0, scaleY=2.0, skewX=0.0, skewY=0.0, tCenterX=0, tCenterY=0)
        >>> DecomposedTransform.fromTransform(Transform(0, 0, 0, 1, 0, 0))
        DecomposedTransform(translateX=0, translateY=0, rotation=0.0, scaleX=0.0, scaleY=1.0, skewX=0.0, skewY=0.0, tCenterX=0, tCenterY=0)
        >>> DecomposedTransform.fromTransform(Transform(0, 0, 1, 1, 0, 0))
        DecomposedTransform(translateX=0, translateY=0, rotation=-45.0, scaleX=0.0, scaleY=1.4142135623730951, skewX=0.0, skewY=0.0, tCenterX=0, tCenterY=0)
r   r      g        )r=   copysignsqrtacosatanpir
   degrees)r!   r5   abrA   dr#   r$   sxdeltar   r   r   r   rrB   s                   r   rg   !DecomposedTransform.fromTransform  ss     %aA]]1a 6GAGA 6Q!V		!%!%-(A+,6tyy'		!%8H7HHFIIququ}78E!VqAv		!%!%-(Aww{%&!V		1"q&!$))AE2B1BH $iF "LL"KLL"$

 
	
r   c                0   [        5       nUR                  U R                  U R                  -   U R                  U R
                  -   5      nUR                  [        R                  " U R                  5      5      nUR                  U R                  U R                  5      nUR                  [        R                  " U R                  5      [        R                  " U R                  5      5      nUR                  U R                  * U R
                  * 5      nU$ )zReturn the Transform() equivalent of this transformation.

:Example:
        >>> DecomposedTransform(scaleX=2, scaleY=2).toTransform()
        <Transform [2 0 0 2 0 0]>
        >>>
)r   r7   r   r   r   r   rC   r=   radiansr   r:   r   r   rG   r   r   )r!   ts     r   toTransformDecomposedTransform.toTransform  s     KKKOOdmm+T__t}}-L
 HHT\\$--01GGDKK-FF4<<

+T\\$**-EFKK7r   r    N)rs   r   )rn   rv   rw   rx   ry   r   rz   r   r   r   r   r   r   r   r   rk   classmethodrg   r   r{   r    r   r   r
   r
     s     JJHeFEFEE5E5HeHe
 6
 6
pr   r
   __main__)r   r   rs   r   rq   )r#   r   r$   r   rs   r   )N)r#   r   r$   rr   rs   r   )ry   
__future__r   r=   typingr   dataclassesr   __all__r   r   r   r   r   r   r   r	   r
   rn   sysdoctestexittestmodfailedr    r   r   <module>r      s   4l #   ! N 8|(] hP
 hPV	 ;'' e e eP zHHW__%%&	 r   