
    h                     T    S r SSKrSSKJr  S/r\R                  " SSS9SS j5       rg)	a  Generator for Sudoku graphs

This module gives a generator for n-Sudoku graphs. It can be used to develop
algorithms for solving or generating Sudoku puzzles.

A completed Sudoku grid is a 9x9 array of integers between 1 and 9, with no
number appearing twice in the same row, column, or 3x3 box.

+---------+---------+---------+
| | 8 6 4 | | 3 7 1 | | 2 5 9 |
| | 3 2 5 | | 8 4 9 | | 7 6 1 |
| | 9 7 1 | | 2 6 5 | | 8 4 3 |
+---------+---------+---------+
| | 4 3 6 | | 1 9 2 | | 5 8 7 |
| | 1 9 8 | | 6 5 7 | | 4 3 2 |
| | 2 5 7 | | 4 8 3 | | 9 1 6 |
+---------+---------+---------+
| | 6 8 9 | | 7 3 4 | | 1 2 5 |
| | 7 1 3 | | 5 2 8 | | 6 9 4 |
| | 5 4 2 | | 9 1 6 | | 3 7 8 |
+---------+---------+---------+


The Sudoku graph is an undirected graph with 81 vertices, corresponding to
the cells of a Sudoku grid. It is a regular graph of degree 20. Two distinct
vertices are adjacent if and only if the corresponding cells belong to the
same row, column, or box. A completed Sudoku grid corresponds to a vertex
coloring of the Sudoku graph with nine colors.

More generally, the n-Sudoku graph is a graph with n^4 vertices, corresponding
to the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
only if they belong to the same row, column, or n by n box.

References
----------
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
    polynomials. Notices of the AMS, 54(6), 708-717.
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
    Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
    Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
    N)NetworkXErrorsudoku_graphT)graphsreturns_graphc                    U S:  a  [        S5      eX -  nX-  nX -  n[        R                  " U5      nU S:  a  U$ [        U5       HB  nXQ-  n[        SU5       H+  n[        U5       H  nUR	                  Xh-   Xg-   5        M     M-     MD     [        U5       H:  n	[        XU5       H'  n[        XU5       H  nUR	                  X5        M     M)     M<     [        U 5       Hr  n
[        U 5       H`  nX*-  X-  -   n[        SU5       HD  n[        U5       H2  nXU -  -   XU -  -  -   nXU -  -   XU -  -  -   nUR	                  X5        M4     MF     Mb     Mt     U$ )a  Returns the n-Sudoku graph. The default value of n is 3.

The n-Sudoku graph is a graph with n^4 vertices, corresponding to the
cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
only if they belong to the same row, column, or n-by-n box.

Parameters
----------
n: integer
   The order of the Sudoku graph, equal to the square root of the
   number of rows. The default is 3.

Returns
-------
NetworkX graph
    The n-Sudoku graph Sud(n).

Examples
--------
>>> G = nx.sudoku_graph()
>>> G.number_of_nodes()
81
>>> G.number_of_edges()
810
>>> sorted(G.neighbors(42))
[6, 15, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 51, 52, 53, 60, 69, 78]
>>> G = nx.sudoku_graph(2)
>>> G.number_of_nodes()
16
>>> G.number_of_edges()
56

References
----------
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
   polynomials. Notices of the AMS, 54(6), 708-717.
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
   Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
   Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
r   z0The order must be greater than or equal to zero.      )r   nxempty_graphrangeadd_edge)nn2n3n4Grow_no	row_startjicol_noband_nostack_no	box_startuvs                  L/var/www/html/env/lib/python3.13/site-packages/networkx/generators/sudoku.pyr   r   2   s[   X 	1uNOO	
B	B	B 	rA 	1u )K	q"A1X

9=)-8    )v2&A6b)

1  * '  8aHq|3I1b\qA!U+bFm;A!U+bFm;AJJq$ " " !  H    )   )__doc__networkxr
   networkx.exceptionr   __all___dispatchabler    r   r   <module>r&      s>   )V  ,
 T2P 3Pr   