
    Kh                        S r SSKrSSKJr  SSKJr  SSKJ	r
  SSKJr  / SQr\
R                  rS rS	 r\R$                  " S
S/5      r\R$                  " S/5      r\R$                  " S/5      r\R$                  " SS/5      rS rS rS rS rS rS rS rS&S jrS'S jrS/ SSS4S jr S(S jr!S r"S r#S r$S r%S r&S r'S r(S)S jr)S  r*S! r+S" r,S# r- " S$ S%\5      r.g)*a  
==================================================
Laguerre Series (:mod:`numpy.polynomial.laguerre`)
==================================================

This module provides a number of objects (mostly functions) useful for
dealing with Laguerre series, including a `Laguerre` class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).

Classes
-------
.. autosummary::
   :toctree: generated/

   Laguerre

Constants
---------
.. autosummary::
   :toctree: generated/

   lagdomain
   lagzero
   lagone
   lagx

Arithmetic
----------
.. autosummary::
   :toctree: generated/

   lagadd
   lagsub
   lagmulx
   lagmul
   lagdiv
   lagpow
   lagval
   lagval2d
   lagval3d
   laggrid2d
   laggrid3d

Calculus
--------
.. autosummary::
   :toctree: generated/

   lagder
   lagint

Misc Functions
--------------
.. autosummary::
   :toctree: generated/

   lagfromroots
   lagroots
   lagvander
   lagvander2d
   lagvander3d
   laggauss
   lagweight
   lagcompanion
   lagfit
   lagtrim
   lagline
   lag2poly
   poly2lag

See also
--------
`numpy.polynomial`

    N)normalize_axis_index   )	polyutils)ABCPolyBase)lagzerolagonelagx	lagdomainlaglinelagaddlagsublagmulxlagmullagdivlagpowlagvallagderlagintlag2polypoly2laglagfromroots	lagvanderlagfitlagtrimlagrootsLaguerrelagval2dlagval3d	laggrid2d	laggrid3dlagvander2dlagvander3dlagcompanionlaggauss	lagweightc                     [         R                  " U /5      u  n SnU SSS2    H  n[        [        U5      U5      nM     U$ )a+  
poly2lag(pol)

Convert a polynomial to a Laguerre series.

Convert an array representing the coefficients of a polynomial (relative
to the "standard" basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Laguerre series, ordered
from lowest to highest degree.

Parameters
----------
pol : array_like
    1-D array containing the polynomial coefficients

Returns
-------
c : ndarray
    1-D array containing the coefficients of the equivalent Laguerre
    series.

See Also
--------
lag2poly

Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples
--------
>>> import numpy as np
>>> from numpy.polynomial.laguerre import poly2lag
>>> poly2lag(np.arange(4))
array([ 23., -63.,  58., -18.])

r   N)pu	as_seriesr   r   )polresps      K/var/www/html/env/lib/python3.13/site-packages/numpy/polynomial/laguerre.pyr   r   `   sC    N LL#ES
C2YWS\1% J    c           
      J   SSK JnJnJn  [        R
                  " U /5      u  n [        U 5      nUS:X  a  U $ U S   nU S   n[        US-
  SS5       H<  nUnU" XS-
     XgS-
  -  U-  5      nU" X" SU-  S-
  U-  U" U5      5      U-  5      nM>     U" XR" Xc" U5      5      5      $ )a  
Convert a Laguerre series to a polynomial.

Convert an array representing the coefficients of a Laguerre series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.

Parameters
----------
c : array_like
    1-D array containing the Laguerre series coefficients, ordered
    from lowest order term to highest.

Returns
-------
pol : ndarray
    1-D array containing the coefficients of the equivalent polynomial
    (relative to the "standard" basis) ordered from lowest order term
    to highest.

See Also
--------
poly2lag

Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples
--------
>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([ 23., -63.,  58., -18.])
array([0., 1., 2., 3.])

r   )polyaddpolysubpolymulxr'      )
polynomialr0   r1   r2   r(   r)   lenrange)	cr0   r1   r2   nc0c1itmps	            r-   r   r      s    L 76
,,s
CQAAAvrUrUq1ua$ACq5BAJ>2BgqsQwlHRLA!CDB % r72x|455r.                 ?r'   c                 r    US:w  a  [         R                  " X-   U* /5      $ [         R                  " U /5      $ )aP  
Laguerre series whose graph is a straight line.

Parameters
----------
off, scl : scalars
    The specified line is given by ``off + scl*x``.

Returns
-------
y : ndarray
    This module's representation of the Laguerre series for
    ``off + scl*x``.

See Also
--------
numpy.polynomial.polynomial.polyline
numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.hermite.hermline
numpy.polynomial.hermite_e.hermeline

Examples
--------
>>> from numpy.polynomial.laguerre import lagline, lagval
>>> lagval(0,lagline(3, 2))
3.0
>>> lagval(1,lagline(3, 2))
5.0

r   )nparray)offscls     r-   r   r      s4    @ axxxSD)**xxr.   c                 B    [         R                  " [        [        U 5      $ )a  
Generate a Laguerre series with given roots.

The function returns the coefficients of the polynomial

.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),

in Laguerre form, where the :math:`r_n` are the roots specified in `roots`.
If a zero has multiplicity n, then it must appear in `roots` n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.

If the returned coefficients are `c`, then

.. math:: p(x) = c_0 + c_1 * L_1(x) + ... +  c_n * L_n(x)

The coefficient of the last term is not generally 1 for monic
polynomials in Laguerre form.

Parameters
----------
roots : array_like
    Sequence containing the roots.

Returns
-------
out : ndarray
    1-D array of coefficients.  If all roots are real then `out` is a
    real array, if some of the roots are complex, then `out` is complex
    even if all the coefficients in the result are real (see Examples
    below).

See Also
--------
numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.chebyshev.chebfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.hermite_e.hermefromroots

Examples
--------
>>> from numpy.polynomial.laguerre import lagfromroots, lagval
>>> coef = lagfromroots((-1, 0, 1))
>>> lagval((-1, 0, 1), coef)
array([0.,  0.,  0.])
>>> coef = lagfromroots((-1j, 1j))
>>> lagval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

)r(   
_fromrootsr   r   )rootss    r-   r   r      s    j ==&%00r.   c                 .    [         R                  " X5      $ )aw  
Add one Laguerre series to another.

Returns the sum of two Laguerre series `c1` + `c2`.  The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

Parameters
----------
c1, c2 : array_like
    1-D arrays of Laguerre series coefficients ordered from low to
    high.

Returns
-------
out : ndarray
    Array representing the Laguerre series of their sum.

See Also
--------
lagsub, lagmulx, lagmul, lagdiv, lagpow

Notes
-----
Unlike multiplication, division, etc., the sum of two Laguerre series
is a Laguerre series (without having to "reproject" the result onto
the basis set) so addition, just like that of "standard" polynomials,
is simply "component-wise."

Examples
--------
>>> from numpy.polynomial.laguerre import lagadd
>>> lagadd([1, 2, 3], [1, 2, 3, 4])
array([2.,  4.,  6.,  4.])

)r(   _addr;   c2s     r-   r   r   5      J 772?r.   c                 .    [         R                  " X5      $ )a  
Subtract one Laguerre series from another.

Returns the difference of two Laguerre series `c1` - `c2`.  The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

Parameters
----------
c1, c2 : array_like
    1-D arrays of Laguerre series coefficients ordered from low to
    high.

Returns
-------
out : ndarray
    Of Laguerre series coefficients representing their difference.

See Also
--------
lagadd, lagmulx, lagmul, lagdiv, lagpow

Notes
-----
Unlike multiplication, division, etc., the difference of two Laguerre
series is a Laguerre series (without having to "reproject" the result
onto the basis set) so subtraction, just like that of "standard"
polynomials, is simply "component-wise."

Examples
--------
>>> from numpy.polynomial.laguerre import lagsub
>>> lagsub([1, 2, 3, 4], [1, 2, 3])
array([0.,  0.,  0.,  4.])

)r(   _subrJ   s     r-   r   r   ]  rL   r.   c                    [         R                  " U /5      u  n [        U 5      S:X  a  U S   S:X  a  U $ [        R                  " [        U 5      S-   U R
                  S9nU S   US'   U S   * US'   [        S[        U 5      5       H>  nX   * US-   -  XS-   '   X==   X   SU-  S-   -  -  ss'   XS-
  ==   X   U-  -  ss'   M@     U$ )a  Multiply a Laguerre series by x.

Multiply the Laguerre series `c` by x, where x is the independent
variable.


Parameters
----------
c : array_like
    1-D array of Laguerre series coefficients ordered from low to
    high.

Returns
-------
out : ndarray
    Array representing the result of the multiplication.

See Also
--------
lagadd, lagsub, lagmul, lagdiv, lagpow

Notes
-----
The multiplication uses the recursion relationship for Laguerre
polynomials in the form

.. math::

    xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))

Examples
--------
>>> from numpy.polynomial.laguerre import lagmulx
>>> lagmulx([1, 2, 3])
array([-1.,  -1.,  11.,  -9.])

r   r   dtyper4   )r(   r)   r6   rA   emptyrQ   r7   )r8   prdr<   s      r-   r   r     s    N ,,s
CQ
1v{qtqy
((3q6A:QWW
-CqTCFdUCF1c!fdUAE]E
!$!a. E
ad1f
  Jr.   c           
      4   [         R                  " X/5      u  p[        U 5      [        U5      :  a  UnU nOU nUn[        U5      S:X  a  US   U-  nSn O[        U5      S:X  a  US   U-  nUS   U-  n O[        U5      nUS   U-  nUS   U-  n [        S[        U5      S-   5       HO  nUnUS-
  n[	        X&*    U-  XS-
  -  U-  5      n[        U[	        SU-  S-
  U -  [        U 5      5      U-  5      n MQ     [        U[	        U [        U 5      5      5      $ )a  
Multiply one Laguerre series by another.

Returns the product of two Laguerre series `c1` * `c2`.  The arguments
are sequences of coefficients, from lowest order "term" to highest,
e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

Parameters
----------
c1, c2 : array_like
    1-D arrays of Laguerre series coefficients ordered from low to
    high.

Returns
-------
out : ndarray
    Of Laguerre series coefficients representing their product.

See Also
--------
lagadd, lagsub, lagmulx, lagdiv, lagpow

Notes
-----
In general, the (polynomial) product of two C-series results in terms
that are not in the Laguerre polynomial basis set.  Thus, to express
the product as a Laguerre series, it is necessary to "reproject" the
product onto said basis set, which may produce "unintuitive" (but
correct) results; see Examples section below.

Examples
--------
>>> from numpy.polynomial.laguerre import lagmul
>>> lagmul([1, 2, 3], [0, 1, 2])
array([  8., -13.,  38., -51.,  36.])

r   r   r4   r3   r'      )r(   r)   r6   r7   r   r   r   )r;   rK   r8   xsr:   ndr<   r=   s           r-   r   r     s(   N ||RH%HR
2wR
1v{qT"W	Q1qT"WqT"WVrU2XrU2Xq#a&1*%ACaB"b2Av;"23BVQrTAXrM72;?BCB	 &
 "fR-..r.   c                 8    [         R                  " [        X5      $ )a  
Divide one Laguerre series by another.

Returns the quotient-with-remainder of two Laguerre series
`c1` / `c2`.  The arguments are sequences of coefficients from lowest
order "term" to highest, e.g., [1,2,3] represents the series
``P_0 + 2*P_1 + 3*P_2``.

Parameters
----------
c1, c2 : array_like
    1-D arrays of Laguerre series coefficients ordered from low to
    high.

Returns
-------
[quo, rem] : ndarrays
    Of Laguerre series coefficients representing the quotient and
    remainder.

See Also
--------
lagadd, lagsub, lagmulx, lagmul, lagpow

Notes
-----
In general, the (polynomial) division of one Laguerre series by another
results in quotient and remainder terms that are not in the Laguerre
polynomial basis set.  Thus, to express these results as a Laguerre
series, it is necessary to "reproject" the results onto the Laguerre
basis set, which may produce "unintuitive" (but correct) results; see
Examples section below.

Examples
--------
>>> from numpy.polynomial.laguerre import lagdiv
>>> lagdiv([  8., -13.,  38., -51.,  36.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> lagdiv([  9., -12.,  38., -51.,  36.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

)r(   _divr   rJ   s     r-   r   r     s    V 7762""r.   c                 :    [         R                  " [        XU5      $ )a  Raise a Laguerre series to a power.

Returns the Laguerre series `c` raised to the power `pow`. The
argument `c` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series  ``P_0 + 2*P_1 + 3*P_2.``

Parameters
----------
c : array_like
    1-D array of Laguerre series coefficients ordered from low to
    high.
pow : integer
    Power to which the series will be raised
maxpower : integer, optional
    Maximum power allowed. This is mainly to limit growth of the series
    to unmanageable size. Default is 16

Returns
-------
coef : ndarray
    Laguerre series of power.

See Also
--------
lagadd, lagsub, lagmulx, lagmul, lagdiv

Examples
--------
>>> from numpy.polynomial.laguerre import lagpow
>>> lagpow([1, 2, 3], 2)
array([ 14., -16.,  56., -72.,  54.])

)r(   _powr   )r8   powmaxpowers      r-   r   r   +  s    D 77618,,r.   c                    [         R                  " U SSS9n U R                  R                  S;   a  U R	                  [         R
                  5      n [        R                  " US5      n[        R                  " US5      nUS:  a  [        S5      e[        XPR                  5      nUS:X  a  U $ [         R                  " XS5      n [        U 5      nXF:  a	  U S	S S-  n O[        U5       Hv  nUS-
  nX-  n [         R                  " U4U R                  SS	 -   U R                  S
9n[        USS5       H  n	X	   * XS-
  '   X	S-
  ==   X	   -  ss'   M      U S   * US'   Un Mx     [         R                  " U SU5      n U $ )a_  
Differentiate a Laguerre series.

Returns the Laguerre series coefficients `c` differentiated `m` times
along `axis`.  At each iteration the result is multiplied by `scl` (the
scaling factor is for use in a linear change of variable). The argument
`c` is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``
while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is
``y``.

Parameters
----------
c : array_like
    Array of Laguerre series coefficients. If `c` is multidimensional
    the different axis correspond to different variables with the
    degree in each axis given by the corresponding index.
m : int, optional
    Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
    Each differentiation is multiplied by `scl`.  The end result is
    multiplication by ``scl**m``.  This is for use in a linear change of
    variable. (Default: 1)
axis : int, optional
    Axis over which the derivative is taken. (Default: 0).

Returns
-------
der : ndarray
    Laguerre series of the derivative.

See Also
--------
lagint

Notes
-----
In general, the result of differentiating a Laguerre series does not
resemble the same operation on a power series. Thus the result of this
function may be "unintuitive," albeit correct; see Examples section
below.

Examples
--------
>>> from numpy.polynomial.laguerre import lagder
>>> lagder([ 1.,  1.,  1., -3.])
array([1.,  2.,  3.])
>>> lagder([ 1.,  0.,  0., -4.,  3.], m=2)
array([1.,  2.,  3.])

r   Tndmincopy?bBhHiIlLqQpPzthe order of derivationthe axisr   z,The order of derivation must be non-negativeNrP   r'   )rA   rB   rQ   charastypedoubler(   _as_int
ValueErrorr   ndimmoveaxisr6   r7   rR   shape)
r8   mrD   axiscntiaxisr9   r<   derjs
             r-   r   r   P  sY   j 	!$'Aww||&HHRYY
**Q1
2CJJtZ(E
QwGHH /E
ax
Aa AAA
xbqE!GsAAAHA((A4!''!"+-QWW=C1a_dUE
a%AD  % dUCFA  	Aq% AHr.   c           	         [         R                  " U SSS9n U R                  R                  S;   a  U R	                  [         R
                  5      n [         R                  " U5      (       d  U/n[        R                  " US5      n[        R                  " US5      nUS:  a  [        S5      e[        U5      U:  a  [        S	5      e[         R                  " U5      S:w  a  [        S
5      e[         R                  " U5      S:w  a  [        S5      e[        XpR                  5      nUS:X  a  U $ [         R                  " XS5      n [        U5      S/U[        U5      -
  -  -   n[        U5       H  n[        U 5      n	X-  n U	S:X  a2  [         R                   " U S   S:H  5      (       a  U S==   X(   -  ss'   MJ  [         R"                  " U	S-   4U R$                  SS -   U R                  S9n
U S   U
S'   U S   * U
S'   [        SU	5       H  nX==   X   -  ss'   X   * XS-   '   M     U
S==   X(   ['        X:5      -
  -  ss'   U
n M     [         R                  " U SU5      n U $ )ab  
Integrate a Laguerre series.

Returns the Laguerre series coefficients `c` integrated `m` times from
`lbnd` along `axis`. At each iteration the resulting series is
**multiplied** by `scl` and an integration constant, `k`, is added.
The scaling factor is for use in a linear change of variable.  ("Buyer
beware": note that, depending on what one is doing, one may want `scl`
to be the reciprocal of what one might expect; for more information,
see the Notes section below.)  The argument `c` is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]
represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.


Parameters
----------
c : array_like
    Array of Laguerre series coefficients. If `c` is multidimensional
    the different axis correspond to different variables with the
    degree in each axis given by the corresponding index.
m : int, optional
    Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
    Integration constant(s).  The value of the first integral at
    ``lbnd`` is the first value in the list, the value of the second
    integral at ``lbnd`` is the second value, etc.  If ``k == []`` (the
    default), all constants are set to zero.  If ``m == 1``, a single
    scalar can be given instead of a list.
lbnd : scalar, optional
    The lower bound of the integral. (Default: 0)
scl : scalar, optional
    Following each integration the result is *multiplied* by `scl`
    before the integration constant is added. (Default: 1)
axis : int, optional
    Axis over which the integral is taken. (Default: 0).

Returns
-------
S : ndarray
    Laguerre series coefficients of the integral.

Raises
------
ValueError
    If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
    ``np.ndim(scl) != 0``.

See Also
--------
lagder

Notes
-----
Note that the result of each integration is *multiplied* by `scl`.
Why is this important to note?  Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`.  Then
:math:`dx = du/a`, so one will need to set `scl` equal to
:math:`1/a` - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs
to be "reprojected" onto the C-series basis set.  Thus, typically,
the result of this function is "unintuitive," albeit correct; see
Examples section below.

Examples
--------
>>> from numpy.polynomial.laguerre import lagint
>>> lagint([1,2,3])
array([ 1.,  1.,  1., -3.])
>>> lagint([1,2,3], m=2)
array([ 1.,  0.,  0., -4.,  3.])
>>> lagint([1,2,3], k=1)
array([ 2.,  1.,  1., -3.])
>>> lagint([1,2,3], lbnd=-1)
array([11.5,  1. ,  1. , -3. ])
>>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
array([ 11.16666667,  -5.        ,  -3.        ,   2.        ]) # may vary

r   Tr_   rb   zthe order of integrationrc   r   z-The order of integration must be non-negativezToo many integration constantszlbnd must be a scalar.zscl must be a scalar.NrP   )rA   rB   rQ   rd   re   rf   iterabler(   rg   rh   r6   ri   r   rj   listr7   allrR   rk   r   )r8   rl   klbndrD   rm   rn   ro   r<   r9   r=   rq   s               r-   r   r     s   d 	!$'Aww||&HHRYY;;q>>C
**Q2
3CJJtZ(E
QwHII
1v|9::	wwt}122	wws|q011 /E
ax
Aa AQ1#sSV|$$A3ZF	6bffQqTQY''aDADLD((AE8aggabk1ACqTCFdUCF1a[!$dUE
 ! FadVD...FA  	Aq% AHr.   c                    [         R                  " USSS9nUR                  R                  S;   a  UR	                  [         R
                  5      n[        U [        [        45      (       a  [         R                  " U 5      n [        U [         R                  5      (       a2  U(       a+  UR                  UR                  SU R                  -  -   5      n[        U5      S:X  a  US   nSnOx[        U5      S:X  a  US   nUS   nO^[        U5      nUS   nUS	   n[        S
[        U5      S-   5       H-  nUnUS-
  nX*    XES-
  -  U-  -
  nXtSU-  S-
  U -
  -  U-  -   nM/     X4SU -
  -  -   $ )a5	  
Evaluate a Laguerre series at points x.

If `c` is of length ``n + 1``, this function returns the value:

.. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)

The parameter `x` is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either `x`
or its elements must support multiplication and addition both with
themselves and with the elements of `c`.

If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`.  If
`c` is multidimensional, then the shape of the result depends on the
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

Parameters
----------
x : array_like, compatible object
    If `x` is a list or tuple, it is converted to an ndarray, otherwise
    it is left unchanged and treated as a scalar. In either case, `x`
    or its elements must support addition and multiplication with
    themselves and with the elements of `c`.
c : array_like
    Array of coefficients ordered so that the coefficients for terms of
    degree n are contained in c[n]. If `c` is multidimensional the
    remaining indices enumerate multiple polynomials. In the two
    dimensional case the coefficients may be thought of as stored in
    the columns of `c`.
tensor : boolean, optional
    If True, the shape of the coefficient array is extended with ones
    on the right, one for each dimension of `x`. Scalars have dimension 0
    for this action. The result is that every column of coefficients in
    `c` is evaluated for every element of `x`. If False, `x` is broadcast
    over the columns of `c` for the evaluation.  This keyword is useful
    when `c` is multidimensional. The default value is True.

Returns
-------
values : ndarray, algebra_like
    The shape of the return value is described above.

See Also
--------
lagval2d, laggrid2d, lagval3d, laggrid3d

Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.

Examples
--------
>>> from numpy.polynomial.laguerre import lagval
>>> coef = [1, 2, 3]
>>> lagval(1, coef)
-0.5
>>> lagval([[1, 2],[3, 4]], coef)
array([[-0.5, -4. ],
       [-4.5, -2. ]])

r   Nr_   rb   )r   r   r4   r3   r'   rU   )rA   rB   rQ   rd   re   rf   
isinstancetuplert   asarrayndarrayreshaperk   ri   r6   r7   )xr8   tensorr:   r;   rW   r<   r=   s           r-   r   r     sJ   F 	!$'Aww||&HHRYY!eT]##JJqM!RZZ  VIIaggQVV+,
1v{qT	Q1qTqTVrUrUq#a&1*%ACaB2"1f+r))BQrTAXN+R//B	 &
 AE
?r.   c                 :    [         R                  " [        X U5      $ )a
  
Evaluate a 2-D Laguerre series at points (x, y).

This function returns the values:

.. math:: p(x,y) = \sum_{i,j} c_{i,j} * L_i(x) * L_j(y)

The parameters `x` and `y` are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either `x`
and `y` or their elements must support multiplication and addition both
with themselves and with the elements of `c`.

If `c` is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.

Parameters
----------
x, y : array_like, compatible objects
    The two dimensional series is evaluated at the points ``(x, y)``,
    where `x` and `y` must have the same shape. If `x` or `y` is a list
    or tuple, it is first converted to an ndarray, otherwise it is left
    unchanged and if it isn't an ndarray it is treated as a scalar.
c : array_like
    Array of coefficients ordered so that the coefficient of the term
    of multi-degree i,j is contained in ``c[i,j]``. If `c` has
    dimension greater than two the remaining indices enumerate multiple
    sets of coefficients.

Returns
-------
values : ndarray, compatible object
    The values of the two dimensional polynomial at points formed with
    pairs of corresponding values from `x` and `y`.

See Also
--------
lagval, laggrid2d, lagval3d, laggrid3d

Examples
--------
>>> from numpy.polynomial.laguerre import lagval2d
>>> c = [[1, 2],[3, 4]]
>>> lagval2d(1, 1, c)
1.0
r(   _valndr   r~   yr8   s      r-   r   r   {  s    ^ 99VQ1%%r.   c                 :    [         R                  " [        X U5      $ )a  
Evaluate a 2-D Laguerre series on the Cartesian product of x and y.

This function returns the values:

.. math:: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b)

where the points ``(a, b)`` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
`x` in the first dimension and `y` in the second.

The parameters `x` and `y` are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either `x` and `y` or their elements must support multiplication
and addition both with themselves and with the elements of `c`.

If `c` has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape + y.shape.

Parameters
----------
x, y : array_like, compatible objects
    The two dimensional series is evaluated at the points in the
    Cartesian product of `x` and `y`.  If `x` or `y` is a list or
    tuple, it is first converted to an ndarray, otherwise it is left
    unchanged and, if it isn't an ndarray, it is treated as a scalar.
c : array_like
    Array of coefficients ordered so that the coefficient of the term of
    multi-degree i,j is contained in ``c[i,j]``. If `c` has dimension
    greater than two the remaining indices enumerate multiple sets of
    coefficients.

Returns
-------
values : ndarray, compatible object
    The values of the two dimensional Chebyshev series at points in the
    Cartesian product of `x` and `y`.

See Also
--------
lagval, lagval2d, lagval3d, laggrid3d

Examples
--------
>>> from numpy.polynomial.laguerre import laggrid2d
>>> c = [[1, 2], [3, 4]]
>>> laggrid2d([0, 1], [0, 1], c)
array([[10.,  4.],
       [ 3.,  1.]])

r(   _gridndr   r   s      r-   r   r     s    j ::faA&&r.   c                 :    [         R                  " [        X0X5      $ )a{  
Evaluate a 3-D Laguerre series at points (x, y, z).

This function returns the values:

.. math:: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)

The parameters `x`, `y`, and `z` are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
`x`, `y`, and `z` or their elements must support multiplication and
addition both with themselves and with the elements of `c`.

If `c` has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

Parameters
----------
x, y, z : array_like, compatible object
    The three dimensional series is evaluated at the points
    ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape.  If
    any of `x`, `y`, or `z` is a list or tuple, it is first converted
    to an ndarray, otherwise it is left unchanged and if it isn't an
    ndarray it is  treated as a scalar.
c : array_like
    Array of coefficients ordered so that the coefficient of the term of
    multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
    greater than 3 the remaining indices enumerate multiple sets of
    coefficients.

Returns
-------
values : ndarray, compatible object
    The values of the multidimensional polynomial on points formed with
    triples of corresponding values from `x`, `y`, and `z`.

See Also
--------
lagval, lagval2d, laggrid2d, laggrid3d

Examples
--------
>>> from numpy.polynomial.laguerre import lagval3d
>>> c = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> lagval3d(1, 1, 2, c)
-1.0

r   r~   r   zr8   s       r-   r   r     s    d 99VQ1((r.   c                 :    [         R                  " [        X0X5      $ )a  
Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.

This function returns the values:

.. math:: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)

where the points ``(a, b, c)`` consist of all triples formed by taking
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
a grid with `x` in the first dimension, `y` in the second, and `z` in
the third.

The parameters `x`, `y`, and `z` are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either `x`, `y`, and `z` or their elements must support
multiplication and addition both with themselves and with the elements
of `c`.

If `c` has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

Parameters
----------
x, y, z : array_like, compatible objects
    The three dimensional series is evaluated at the points in the
    Cartesian product of `x`, `y`, and `z`.  If `x`, `y`, or `z` is a
    list or tuple, it is first converted to an ndarray, otherwise it is
    left unchanged and, if it isn't an ndarray, it is treated as a
    scalar.
c : array_like
    Array of coefficients ordered so that the coefficients for terms of
    degree i,j are contained in ``c[i,j]``. If `c` has dimension
    greater than two the remaining indices enumerate multiple sets of
    coefficients.

Returns
-------
values : ndarray, compatible object
    The values of the two dimensional polynomial at points in the Cartesian
    product of `x` and `y`.

See Also
--------
lagval, lagval2d, laggrid2d, lagval3d

Examples
--------
>>> from numpy.polynomial.laguerre import laggrid3d
>>> c = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> laggrid3d([0, 1], [0, 1], [2, 4], c)
array([[[ -4., -44.],
        [ -2., -18.]],
       [[ -2., -14.],
        [ -1.,  -5.]]])

r   r   s       r-   r    r      s    t ::faA))r.   c                    [         R                  " US5      nUS:  a  [        S5      e[        R                  " U SSS9S-   n US-   4U R
                  -   nU R                  n[        R                  " X4S9nU S-  S-   US'   US:  aD  SU -
  US'   [        S	US-   5       H)  nXVS-
     S	U-  S-
  U -
  -  XVS	-
     US-
  -  -
  U-  XV'   M+     [        R                  " USS
5      $ )a  Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
`x`. The pseudo-Vandermonde matrix is defined by

.. math:: V[..., i] = L_i(x)

where ``0 <= i <= deg``. The leading indices of `V` index the elements of
`x` and the last index is the degree of the Laguerre polynomial.

If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the
array ``V = lagvander(x, n)``, then ``np.dot(V, c)`` and
``lagval(x, c)`` are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of Laguerre series of the same degree and sample points.

Parameters
----------
x : array_like
    Array of points. The dtype is converted to float64 or complex128
    depending on whether any of the elements are complex. If `x` is
    scalar it is converted to a 1-D array.
deg : int
    Degree of the resulting matrix.

Returns
-------
vander : ndarray
    The pseudo-Vandermonde matrix. The shape of the returned matrix is
    ``x.shape + (deg + 1,)``, where The last index is the degree of the
    corresponding Laguerre polynomial.  The dtype will be the same as
    the converted `x`.

Examples
--------
>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagvander
>>> x = np.array([0, 1, 2])
>>> lagvander(x, 3)
array([[ 1.        ,  1.        ,  1.        ,  1.        ],
       [ 1.        ,  0.        , -0.5       , -0.66666667],
       [ 1.        , -1.        , -1.        , -0.33333333]])

degr   zdeg must be non-negativeNr   )ra   r`   r>   rP   r4   r'   )
r(   rg   rh   rA   rB   rk   rQ   rR   r7   rj   )r~   r   idegdimsdtypvr<   s          r-   r   r   W  s    Z ::c5!Dax344
Q'#-A1H; D77D
"AQ37AaDax1u!q$(#AcFAaC!GaK(1qS61q5>91<AD $;;q!R  r.   c                 H    [         R                  " [        [        4X4U5      $ )a  Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
points ``(x, y)``. The pseudo-Vandermonde matrix is defined by

.. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y),

where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of
`V` index the points ``(x, y)`` and the last index encodes the degrees of
the Laguerre polynomials.

If ``V = lagvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
correspond to the elements of a 2-D coefficient array `c` of shape
(xdeg + 1, ydeg + 1) in the order

.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...

and ``np.dot(V, c.flat)`` and ``lagval2d(x, y, c)`` will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D Laguerre
series of the same degrees and sample points.

Parameters
----------
x, y : array_like
    Arrays of point coordinates, all of the same shape. The dtypes
    will be converted to either float64 or complex128 depending on
    whether any of the elements are complex. Scalars are converted to
    1-D arrays.
deg : list of ints
    List of maximum degrees of the form [x_deg, y_deg].

Returns
-------
vander2d : ndarray
    The shape of the returned matrix is ``x.shape + (order,)``, where
    :math:`order = (deg[0]+1)*(deg[1]+1)`.  The dtype will be the same
    as the converted `x` and `y`.

See Also
--------
lagvander, lagvander3d, lagval2d, lagval3d

Examples
--------
>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagvander2d
>>> x = np.array([0])
>>> y = np.array([2])
>>> lagvander2d(x, y, [2, 1])
array([[ 1., -1.,  1., -1.,  1., -1.]])

r(   _vander_nd_flatr   )r~   r   r   s      r-   r!   r!     s!    l y)4qfcBBr.   c                 T    [         R                  " [        [        [        4XU4U5      $ )a  Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`,
then The pseudo-Vandermonde matrix is defined by

.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),

where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``.  The leading
indices of `V` index the points ``(x, y, z)`` and the last index encodes
the degrees of the Laguerre polynomials.

If ``V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
of `V` correspond to the elements of a 3-D coefficient array `c` of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...

and  ``np.dot(V, c.flat)`` and ``lagval3d(x, y, z, c)`` will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D Laguerre
series of the same degrees and sample points.

Parameters
----------
x, y, z : array_like
    Arrays of point coordinates, all of the same shape. The dtypes will
    be converted to either float64 or complex128 depending on whether
    any of the elements are complex. Scalars are converted to 1-D
    arrays.
deg : list of ints
    List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
-------
vander3d : ndarray
    The shape of the returned matrix is ``x.shape + (order,)``, where
    :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`.  The dtype will
    be the same as the converted `x`, `y`, and `z`.

See Also
--------
lagvander, lagvander3d, lagval2d, lagval3d

Examples
--------
>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagvander3d
>>> x = np.array([0])
>>> y = np.array([2])
>>> z = np.array([0])
>>> lagvander3d(x, y, z, [2, 1, 3])
array([[ 1.,  1.,  1.,  1., -1., -1., -1., -1.,  1.,  1.,  1.,  1., -1.,
        -1., -1., -1.,  1.,  1.,  1.,  1., -1., -1., -1., -1.]])

r   )r~   r   r   r   s       r-   r"   r"     s%    r y)Y?!CPPr.   c           	      <    [         R                  " [        XX#XE5      $ )a  
Least squares fit of Laguerre series to data.

Return the coefficients of a Laguerre series of degree `deg` that is the
least squares fit to the data values `y` given at points `x`. If `y` is
1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
fits are done, one for each column of `y`, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

.. math::  p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),

where ``n`` is `deg`.

Parameters
----------
x : array_like, shape (M,)
    x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
    y-coordinates of the sample points. Several data sets of sample
    points sharing the same x-coordinates can be fitted at once by
    passing in a 2D-array that contains one dataset per column.
deg : int or 1-D array_like
    Degree(s) of the fitting polynomials. If `deg` is a single integer
    all terms up to and including the `deg`'th term are included in the
    fit. For NumPy versions >= 1.11.0 a list of integers specifying the
    degrees of the terms to include may be used instead.
rcond : float, optional
    Relative condition number of the fit. Singular values smaller than
    this relative to the largest singular value will be ignored. The
    default value is len(x)*eps, where eps is the relative precision of
    the float type, about 2e-16 in most cases.
full : bool, optional
    Switch determining nature of return value. When it is False (the
    default) just the coefficients are returned, when True diagnostic
    information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
    Weights. If not None, the weight ``w[i]`` applies to the unsquared
    residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
    chosen so that the errors of the products ``w[i]*y[i]`` all have the
    same variance.  When using inverse-variance weighting, use
    ``w[i] = 1/sigma(y[i])``.  The default value is None.

Returns
-------
coef : ndarray, shape (M,) or (M, K)
    Laguerre coefficients ordered from low to high. If `y` was 2-D,
    the coefficients for the data in column *k*  of `y` are in column
    *k*.

[residuals, rank, singular_values, rcond] : list
    These values are only returned if ``full == True``

    - residuals -- sum of squared residuals of the least squares fit
    - rank -- the numerical rank of the scaled Vandermonde matrix
    - singular_values -- singular values of the scaled Vandermonde matrix
    - rcond -- value of `rcond`.

    For more details, see `numpy.linalg.lstsq`.

Warns
-----
RankWarning
    The rank of the coefficient matrix in the least-squares fit is
    deficient. The warning is only raised if ``full == False``.  The
    warnings can be turned off by

    >>> import warnings
    >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See Also
--------
numpy.polynomial.polynomial.polyfit
numpy.polynomial.legendre.legfit
numpy.polynomial.chebyshev.chebfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
lagval : Evaluates a Laguerre series.
lagvander : pseudo Vandermonde matrix of Laguerre series.
lagweight : Laguerre weight function.
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline : Computes spline fits.

Notes
-----
The solution is the coefficients of the Laguerre series ``p`` that
minimizes the sum of the weighted squared errors

.. math:: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,

where the :math:`w_j` are the weights. This problem is solved by
setting up as the (typically) overdetermined matrix equation

.. math:: V(x) * c = w * y,

where ``V`` is the weighted pseudo Vandermonde matrix of `x`, ``c`` are the
coefficients to be solved for, `w` are the weights, and `y` are the
observed values.  This equation is then solved using the singular value
decomposition of ``V``.

If some of the singular values of `V` are so small that they are
neglected, then a `~exceptions.RankWarning` will be issued. This means that
the coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning.  The `rcond` parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Laguerre series are probably most useful when the data can
be approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the Laguerre
weight. In that case the weight ``sqrt(w(x[i]))`` should be used
together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
available as `lagweight`.

References
----------
.. [1] Wikipedia, "Curve fitting",
       https://en.wikipedia.org/wiki/Curve_fitting

Examples
--------
>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagfit, lagval
>>> x = np.linspace(0, 10)
>>> rng = np.random.default_rng()
>>> err = rng.normal(scale=1./10, size=len(x))
>>> y = lagval(x, [1, 2, 3]) + err
>>> lagfit(x, y, 2)
array([1.00578369, 1.99417356, 2.99827656]) # may vary

)r(   _fitr   )r~   r   r   rcondfullws         r-   r   r   	  s    F 779aC88r.   c                    [         R                  " U /5      u  n [        U 5      S:  a  [        S5      e[        U 5      S:X  a$  [        R
                  " SU S   U S   -  -   //5      $ [        U 5      S-
  n[        R                  " X4U R                  S9nUR                  S5      SSUS-   2   nUR                  S5      SSUS-   2   nUR                  S5      USUS-   2   n[        R                  " SU5      * US'   S	[        R                  " U5      -  S
-   US'   X5S'   USS2S4==   U SS U S   -  U-  -  ss'   U$ )a(  
Return the companion matrix of c.

The usual companion matrix of the Laguerre polynomials is already
symmetric when `c` is a basis Laguerre polynomial, so no scaling is
applied.

Parameters
----------
c : array_like
    1-D array of Laguerre series coefficients ordered from low to high
    degree.

Returns
-------
mat : ndarray
    Companion matrix of dimensions (deg, deg).

Examples
--------
>>> from numpy.polynomial.laguerre import lagcompanion
>>> lagcompanion([1, 2, 3])
array([[ 1.        , -0.33333333],
       [-1.        ,  4.33333333]])

r4   z.Series must have maximum degree of at least 1.r   r   rP   r'   N.g       @r?   )
r(   r)   r6   rh   rA   rB   zerosrQ   r}   arange)r8   r9   mattopmidbots         r-   r#   r#     s4   8 ,,s
CQ
1vzIJJ
1v{xx!ad1Q4i-)**A
A
((A6
)C
++b/!&QqS&
!C
++b/!&QqS&
!C
++b/!&QqS&
!C		!QCH"))A,#CHH2J1Sb6!B%<""JJr.   c                 p   [         R                  " U /5      u  n [        U 5      S::  a  [        R                  " / U R
                  S9$ [        U 5      S:X  a#  [        R                  " SU S   U S   -  -   /5      $ [        U 5      SSS2SSS24   n[        R                  " U5      nUR                  5         U$ )ad  
Compute the roots of a Laguerre series.

Return the roots (a.k.a. "zeros") of the polynomial

.. math:: p(x) = \sum_i c[i] * L_i(x).

Parameters
----------
c : 1-D array_like
    1-D array of coefficients.

Returns
-------
out : ndarray
    Array of the roots of the series. If all the roots are real,
    then `out` is also real, otherwise it is complex.

See Also
--------
numpy.polynomial.polynomial.polyroots
numpy.polynomial.legendre.legroots
numpy.polynomial.chebyshev.chebroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.hermite_e.hermeroots

Notes
-----
The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton's method.

The Laguerre series basis polynomials aren't powers of `x` so the
results of this function may seem unintuitive.

Examples
--------
>>> from numpy.polynomial.laguerre import lagroots, lagfromroots
>>> coef = lagfromroots([0, 1, 2])
>>> coef
array([  2.,  -8.,  12.,  -6.])
>>> lagroots(coef)
array([-4.4408921e-16,  1.0000000e+00,  2.0000000e+00])

r   rP   r4   r   Nr'   )
r(   r)   r6   rA   rB   rQ   r#   laeigvalssort)r8   rl   rs      r-   r   r     s    f ,,s
CQ
1v{xx!''**
1v{xxQqT!A$Y(( 	Q"TrT	"A


1AFFHHr.   c                    [         R                  " U S5      nUS::  a  [        S5      e[        R                  " S/U -  S/-   5      n[        U5      n[        R                  " U5      n[        XB5      n[        U[        U5      5      nXEU-  -  n[        XBSS 5      nU[        R                  " U5      R                  5       -  nU[        R                  " U5      R                  5       -  nSXv-  -  nXR                  5       -  nXH4$ )a  
Gauss-Laguerre quadrature.

Computes the sample points and weights for Gauss-Laguerre quadrature.
These sample points and weights will correctly integrate polynomials of
degree :math:`2*deg - 1` or less over the interval :math:`[0, \inf]`
with the weight function :math:`f(x) = \exp(-x)`.

Parameters
----------
deg : int
    Number of sample points and weights. It must be >= 1.

Returns
-------
x : ndarray
    1-D ndarray containing the sample points.
y : ndarray
    1-D ndarray containing the weights.

Notes
-----
The results have only been tested up to degree 100 higher degrees may
be problematic. The weights are determined by using the fact that

.. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))

where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
is the k'th root of :math:`L_n`, and then scaling the results to get
the right value when integrating 1.

Examples
--------
>>> from numpy.polynomial.laguerre import laggauss
>>> laggauss(2)
(array([0.58578644, 3.41421356]), array([0.85355339, 0.14644661]))

r   r   zdeg must be a positive integerr   N)r(   rg   rh   rA   rB   r#   r   eigvalshr   r   absmaxsum)	r   r   r8   rl   r~   dydffmr   s	            r-   r$   r$     s    N ::c5!Dqy9:: 	!SA3AQA
AA 
B	6!9	BBJA 
QR5	B"&&*..
B"&&*..
B	27A LA4Kr.   c                 4    [         R                  " U * 5      nU$ )a*  Weight function of the Laguerre polynomials.

The weight function is :math:`exp(-x)` and the interval of integration
is :math:`[0, \inf]`. The Laguerre polynomials are orthogonal, but not
normalized, with respect to this weight function.

Parameters
----------
x : array_like
   Values at which the weight function will be computed.

Returns
-------
w : ndarray
   The weight function at `x`.

Examples
--------
>>> from numpy.polynomial.laguerre import lagweight
>>> x = np.array([0, 1, 2])
>>> lagweight(x)
array([1.        , 0.36787944, 0.13533528])

)rA   exp)r~   r   s     r-   r%   r%   @  s    2 	r
AHr.   c                   $   \ rS rSrSr\" \5      r\" \5      r	\" \
5      r\" \5      r\" \5      r\" \5      r\" \5      r\" \5      r\" \5      r\" \5      r\" \5      r\" \5      r\R>                  " \ 5      r!\R>                  " \ 5      r"Sr#Sr$g)r   i`  a  A Laguerre series class.

The Laguerre class provides the standard Python numerical methods
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
attributes and methods listed below.

Parameters
----------
coef : array_like
    Laguerre coefficients in order of increasing degree, i.e,
    ``(1, 2, 3)`` gives ``1*L_0(x) + 2*L_1(X) + 3*L_2(x)``.
domain : (2,) array_like, optional
    Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
    to the interval ``[window[0], window[1]]`` by shifting and scaling.
    The default value is [0., 1.].
window : (2,) array_like, optional
    Window, see `domain` for its use. The default value is [0., 1.].
symbol : str, optional
    Symbol used to represent the independent variable in string
    representations of the polynomial expression, e.g. for printing.
    The symbol must be a valid Python identifier. Default value is 'x'.

    .. versionadded:: 1.24

L N)%__name__
__module____qualname____firstlineno____doc__staticmethodr   rI   r   rN   r   _mulr   rY   r   r[   r   _valr   _intr   _derr   r   r   _liner   _rootsr   rF   rA   rB   r
   domainwindow
basis_name__static_attributes__r   r.   r-   r   r   `  s    4 DDDDDDDDD!E(#Fl+J XXi FXXi FJr.   r   )   )r   r   r   )T)NFN)/r   numpyrA   numpy.linalglinalgr   numpy.lib.array_utilsr    r   r(   	_polybaser   __all__trimcoefr   r   r   rB   r
   r   r   r	   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r   r!   r"   r   r#   r   r$   r%   r   r   r.   r-   <module>r      s/  LZ   6  " +++\46z HHb"X	 ((A3- 
1# 
xxB#L51p%P%P3l?/D+#\"-JQh RaQQ wtZz/&d5'p2)j:*z:!z6Cr9QxC9L+\=@@F@+{ +r.   